Open Access
Numéro
2013
16th International Congress of Metrology
Numéro d'article 11014
Nombre de pages 6
Section Métrologie électrique / Electrical metrology
DOI https://doi.org/10.1051/metrology/201311014
Publié en ligne 7 octobre 2013
  • A.M. Thompson, An absolute determination of resistance, based on calculable standard of capacitance., Metrologia, Vol. 4, № 16, pp. 1–7, (1969). [CrossRef] [Google Scholar]
  • A.M. Thompson, D.G. Lampard. A New Theorem in Electrostatic and its Application to Calculable Standard of Capacitance., Nature, 177, 888, (1956). [CrossRef] [Google Scholar]
  • W. K. A. ClothierCalculable Standard of Capacitance, Metrologia, V.1, № 36, (1965). [CrossRef] [Google Scholar]
  • G.H. Rainer “NPL Calculable Capacitor,” IEEE Trans. Instrum. Meas. Vol. I, M-21, pp. 361–365. (1972). [CrossRef] [Google Scholar]
  • N. Fletcher The BIPM/NMIA, Calculable Capacitor Project., Conference on Precision Electromagnetic Measurements,, Daejeon, Korea, pp. 318–319, June 13–18, (2010). [Google Scholar]
  • H. Bachmair, T. Funck, R. Hanke and H. Lang. Realization and Maintenance of the Unit of Capacitance with PTB Cross Capacitor during the Last Ten Years, IEEE Trans. Instrum. Meas., Vol. 44., No. 2., 8April, (1995). [Google Scholar]
  • v. K. Klitzing, G. Dorda, M. Pepper. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance., Phys. Rev. Lett., 45, 494., (1980). [CrossRef] [Google Scholar]
  • F. Piquemal and other, “Report on a joint BIPM-EUROMET project for the fabrication of QHE samples by the LEP”, IEEE Trans. Instrum. Meas., Vol. 42, no. 2, pp.264–268 (1993). [Google Scholar]
  • MI6800A – Quantum Hall Resistance System, Measurement International Ltd., technical description. [Google Scholar]
  • G. Trapon, O. Thevenot, J.C. Lacueille, W. Poirier. Determination of the von Klitzing constant RK in terms of the BNM calculable capacitor - fifteen years of investigations”, Metrologia, Volume 40, Issue 4, pp. 159–171, August (2003). [CrossRef] [Google Scholar]
  • J.R. Fiander, H.L. Johnson, B.W. Ricketts, S G.W. mall. AC quantized Hall resistance measurements., Precision Electromagnetic Measurements Digest, 2000. Conference on,, Digest, Page(s): 556–557, (2000). [Google Scholar]
  • A.D. Inglis, B.M. Wood, M. Cote, R.B. Young, D. Early. Direct determination of capacitance standards using a quadrature bridge and a pair of quantized Hall resistors., Instrumentation and Measurement, IEEE Transactions on., Volume: 52, Issue: 2_, Page(s): 559–562, (2003) [CrossRef] [Google Scholar]
  • Y. Nakamura, M. Nakanishi, Y. Sakamoto, T. Endo, Development and uncertainty estimation of bridges for the link between capacitance and the QHR at 1 kHz., Precision Electromagnetic Measurements Digest, 2000 Conference on., Page(s): 431–432, (2000) [CrossRef] [Google Scholar]
  • E.F Dierikx. Traceability of capacitance measurements at NMI VSL., Precision Electromagnetic Measurements Digest, 2008. CPEM 2008. Conference on, page(s): 690–691, (2008). [Google Scholar]
  • B. Wood, M. Cote. AC Bridges for the R-C Chain. BNM-LCIE, pp. E1–E20, (1998). [Google Scholar]
  • S.W. Chua, B.P. Kibble, Hartland A., Comparison of Capacitance with AC Quantized Hall Resistance. Conference on Precision Electromagnetic Measurements, Washington DC, USA, 6–10, pp. 418–419, July, (1998). [Google Scholar]
  • M. Surdu, A. Lameko., D. Surdu, S. Kursin. An Automatic Bridge for the comparison of impedance standards, doi /10.1016/measurement.2013.05.029 [Google Scholar]
  • H. Bachmair, R. Vollmert. Comparison of admittances by means of a digital double-sine wave generator, IEEE Trans. Instrum. Meas., Vol. 29, no. 4, pp.370–372, (1980). [Google Scholar]
  • F. Cabiati, G. C. Bosco. LC Comparison System Based on a Two-Phase Generator. Instrumentation and Measurement, IEEE Transactions on Volume: 34, Issue: 2, Page(s): 344–349, (1985) [CrossRef] [Google Scholar]
  • L. Callegaro, V. D’Elia, E. Bava, G. Galzerano, C. Svelto. Polyphase Synthesizer for Unlike-Impedance Intercomparison System, CPEM 2002, Conference Digest, pp. 176–177, (2002) [Google Scholar]
  • B. Trinchera, L. Callegaro, V. Quadrature Bridge for R— C Comparisons Based on Polyphase Digital Synthesis.,Instrumentation and Measurement, IEEE Transactions on, Volume: 58, Issue: 1.,Page(s): 202–206. Jan. (2009) [Google Scholar]
  • L. Callegaro, V. D’Elia, B. Trinchera. Realization of the Farad from the DC quantum Hall effect with digitally assisted impedance bridges,, Metrologia 47, 464, (2010). [CrossRef] [Google Scholar]
  • J. Lan, Z. Zhang, Q. He, J. Zhao and Z. Lu. A digital compensation bridge for R—C comparisons, Metrologia 49 266, (2012) [CrossRef] [Google Scholar]
  • Ф. В.Гриневич, M.H. Сурду. Высокоточные вариационные измерительные системы переменного тока. – Киев, Наукова Думка,., (1989). [Google Scholar]
  • M. Surdu, A. Lаmеко, I. Karpov, A. Koffman A, J. Kinard, M. Klonz, J. Melcher, A. Tarlowsky. Complex of bridge comparators for impedance unit traceability and impedance measurements, CPEM 2006. — р. 520–521, (2006). [Google Scholar]
  • M.N. Surdu, A.L. Lameko, I.V. Karpov, J. Kinard, A. Koffman. Theoretical basis of variational quadrature AC bridges, Measurement Techniques, Moscow. № 10. p. 58–64, (2006). [Google Scholar]
  • A.M Tompson, The precise Measurement of Small Capacitances, IRE Trans. Instr., Volume: I–7, Issue: 3, Page(s): 245–253, (1958). [CrossRef] [Google Scholar]
  • J. Melcher, Performance of Current Equalizers in Connection with Coaxial AC bridges., EUROMET Meeting on AC Bridges and calculable capacitors., BNM-LCIE, 25–26 pp. F1–F16., November, (1998). [Google Scholar]
  • В.С. Гурьянов Метод получения квадратурных напряжений с равными амплитудами., Метрология.,.№ 4., 54 c., (1986) [Google Scholar]
  • М. Н. Сурду. и др. автотрансйорматорный мост переменного тока., А.С. СССР, №1661650 от 15.05, (1989) [Google Scholar]
  • М.Н. Сурду, В.П. Салюк, Ф.Е. Курочкин, И.В. Бобров. Повышение точности измерений параметров комплексных сопротивлений четырехплечими мостами переменного тока. “измерительная техника”, Москва, №3, с.30–32, (1991) [Google Scholar]
  • B.P Kibble, G.H. Rayner Coaxial AC Bridges., Adam Hilger Ltd., Bristol, 203 p. (1984). [Google Scholar]