Open Access
Issue
2013
16th International Congress of Metrology
Article Number 11014
Number of page(s) 6
Section Métrologie électrique / Electrical metrology
DOI https://doi.org/10.1051/metrology/201311014
Published online 07 October 2013
  • A.M. Thompson, An absolute determination of resistance, based on calculable standard of capacitance., Metrologia, Vol. 4, № 16, pp. 1–7, (1969). [CrossRef]
  • A.M. Thompson, D.G. Lampard. A New Theorem in Electrostatic and its Application to Calculable Standard of Capacitance., Nature, 177, 888, (1956). [CrossRef]
  • W. K. A. ClothierCalculable Standard of Capacitance, Metrologia, V.1, № 36, (1965). [CrossRef]
  • G.H. Rainer “NPL Calculable Capacitor,” IEEE Trans. Instrum. Meas. Vol. I, M-21, pp. 361–365. (1972). [CrossRef]
  • N. Fletcher The BIPM/NMIA, Calculable Capacitor Project., Conference on Precision Electromagnetic Measurements,, Daejeon, Korea, pp. 318–319, June 13–18, (2010).
  • H. Bachmair, T. Funck, R. Hanke and H. Lang. Realization and Maintenance of the Unit of Capacitance with PTB Cross Capacitor during the Last Ten Years, IEEE Trans. Instrum. Meas., Vol. 44., No. 2., 8April, (1995). [CrossRef]
  • v. K. Klitzing, G. Dorda, M. Pepper. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance., Phys. Rev. Lett., 45, 494., (1980). [CrossRef]
  • F. Piquemal and other, “Report on a joint BIPM-EUROMET project for the fabrication of QHE samples by the LEP”, IEEE Trans. Instrum. Meas., Vol. 42, no. 2, pp.264–268 (1993). [CrossRef]
  • MI6800A – Quantum Hall Resistance System, Measurement International Ltd., technical description.
  • G. Trapon, O. Thevenot, J.C. Lacueille, W. Poirier. Determination of the von Klitzing constant RK in terms of the BNM calculable capacitor - fifteen years of investigations”, Metrologia, Volume 40, Issue 4, pp. 159–171, August (2003). [CrossRef]
  • J.R. Fiander, H.L. Johnson, B.W. Ricketts, S G.W. mall. AC quantized Hall resistance measurements., Precision Electromagnetic Measurements Digest, 2000. Conference on,, Digest, Page(s): 556–557, (2000).
  • A.D. Inglis, B.M. Wood, M. Cote, R.B. Young, D. Early. Direct determination of capacitance standards using a quadrature bridge and a pair of quantized Hall resistors., Instrumentation and Measurement, IEEE Transactions on., Volume: 52, Issue: 2_, Page(s): 559–562, (2003) [CrossRef]
  • Y. Nakamura, M. Nakanishi, Y. Sakamoto, T. Endo, Development and uncertainty estimation of bridges for the link between capacitance and the QHR at 1 kHz., Precision Electromagnetic Measurements Digest, 2000 Conference on., Page(s): 431–432, (2000) [CrossRef]
  • E.F Dierikx. Traceability of capacitance measurements at NMI VSL., Precision Electromagnetic Measurements Digest, 2008. CPEM 2008. Conference on, page(s): 690–691, (2008).
  • B. Wood, M. Cote. AC Bridges for the R-C Chain. BNM-LCIE, pp. E1–E20, (1998).
  • S.W. Chua, B.P. Kibble, Hartland A., Comparison of Capacitance with AC Quantized Hall Resistance. Conference on Precision Electromagnetic Measurements, Washington DC, USA, 6–10, pp. 418–419, July, (1998).
  • M. Surdu, A. Lameko., D. Surdu, S. Kursin. An Automatic Bridge for the comparison of impedance standards, doi /10.1016/measurement.2013.05.029
  • H. Bachmair, R. Vollmert. Comparison of admittances by means of a digital double-sine wave generator, IEEE Trans. Instrum. Meas., Vol. 29, no. 4, pp.370–372, (1980). [CrossRef]
  • F. Cabiati, G. C. Bosco. LC Comparison System Based on a Two-Phase Generator. Instrumentation and Measurement, IEEE Transactions on Volume: 34, Issue: 2, Page(s): 344–349, (1985) [CrossRef]
  • L. Callegaro, V. D’Elia, E. Bava, G. Galzerano, C. Svelto. Polyphase Synthesizer for Unlike-Impedance Intercomparison System, CPEM 2002, Conference Digest, pp. 176–177, (2002)
  • B. Trinchera, L. Callegaro, V. Quadrature Bridge for R— C Comparisons Based on Polyphase Digital Synthesis.,Instrumentation and Measurement, IEEE Transactions on, Volume: 58, Issue: 1.,Page(s): 202–206. Jan. (2009)
  • L. Callegaro, V. D’Elia, B. Trinchera. Realization of the Farad from the DC quantum Hall effect with digitally assisted impedance bridges,, Metrologia 47, 464, (2010). [CrossRef]
  • J. Lan, Z. Zhang, Q. He, J. Zhao and Z. Lu. A digital compensation bridge for R—C comparisons, Metrologia 49 266, (2012) [CrossRef]
  • Ф. В.Гриневич, M.H. Сурду. Высокоточные вариационные измерительные системы переменного тока. – Киев, Наукова Думка,., (1989).
  • M. Surdu, A. Lаmеко, I. Karpov, A. Koffman A, J. Kinard, M. Klonz, J. Melcher, A. Tarlowsky. Complex of bridge comparators for impedance unit traceability and impedance measurements, CPEM 2006. — р. 520–521, (2006).
  • M.N. Surdu, A.L. Lameko, I.V. Karpov, J. Kinard, A. Koffman. Theoretical basis of variational quadrature AC bridges, Measurement Techniques, Moscow. № 10. p. 58–64, (2006).
  • A.M Tompson, The precise Measurement of Small Capacitances, IRE Trans. Instr., Volume: I–7, Issue: 3, Page(s): 245–253, (1958). [CrossRef]
  • J. Melcher, Performance of Current Equalizers in Connection with Coaxial AC bridges., EUROMET Meeting on AC Bridges and calculable capacitors., BNM-LCIE, 25–26 pp. F1–F16., November, (1998).
  • В.С. Гурьянов Метод получения квадратурных напряжений с равными амплитудами., Метрология.,.№ 4., 54 c., (1986)
  • М. Н. Сурду. и др. автотрансйорматорный мост переменного тока., А.С. СССР, №1661650 от 15.05, (1989)
  • М.Н. Сурду, В.П. Салюк, Ф.Е. Курочкин, И.В. Бобров. Повышение точности измерений параметров комплексных сопротивлений четырехплечими мостами переменного тока. “измерительная техника”, Москва, №3, с.30–32, (1991)
  • B.P Kibble, G.H. Rayner Coaxial AC Bridges., Adam Hilger Ltd., Bristol, 203 p. (1984).