Open Access
Issue
2019
19th International Congress of Metrology
Article Number 17003
Number of page(s) 12
Section Innovations in Flow / Innovations en débitmétrie
DOI https://doi.org/10.1051/metrology/201917003
Published online 23 September 2019
  • ISO 9300. Measurement of gas flow by means of critical flow Venturi nozzles. (2005). [Google Scholar]
  • Hall, G. W. Application of Boundary Layer Theory to Explain Some Nozzle and Venturi Flow Peculiarities. Proc. Inst, of Mechanical Engineers, Vol. 173, No. 36, (1959). [CrossRef] [Google Scholar]
  • Vincent, J., Sur la détermination expérimentale du coefficient de débit des tuyères soniques, C. R. Academic Society of Paris, t. 267, pp. 337-340. Apr. (1968). [Google Scholar]
  • Mazen Azem, Contribution à la mesure du débit au moyen de tuyères soniques, et de diaphragmes à aspiration, Sociétés d’Etude et de Diffusion des Industries Thermiques et Aérauliques, 8e année No. 31, pp. 32-42, Dec. (1971). [Google Scholar]
  • G. Peignelin, P. Grenier, Etude du Coefficient de décharge des tuyères fonctionnant en régime d’écoulement sonique au col utilisées comme étalon pour le mesurage de débit de gaz sous pression, Direction des études et technique nouvelle, GDF, (1972). [Google Scholar]
  • B. Mickan., C.-Y. Kuo., M. Xu., Systematic investigations of cylindrical nozzles acc. ISO 9300 down to throat diameters of 125 μm, 10th ISFFM Querétaro, Mexico, March 21-23, (2018). [Google Scholar]
  • Bremser, W., Hässelbarth, W., Hirlehei, U., Hotze, H.-J., Mickan, B., Kramer, R., Dopheide, D., Uncertainty Analysis and Long-Term Stability Investigation of the German Primary High Pressure Natural Gas Test Facility PIGSARTM, 11th International Conference on Flow Measurement, FLOMEKO 2003, Groningen, The Netherlands, (2003). [Google Scholar]
  • Kramer, R., Mickan, B., Hotze, H.-J., Dopheide, D., The German High-Pressure Piston Prover at PIGSARTM the German fundamental standard for natural gas at high pressure conditions, TechTour to the German High-Pressure National Standard PIGSARTM, ” Ruhrgas AG, Dorsten. [Google Scholar]
  • Gibson J., Stewart D. Consideration for ISO 9300-the effects of roughness and form on the discharge coefficient of toroidal-throat sonic nozzles, Proceedings of ASME FEDSM’03 Honolulu, Hawaii, USA, July; 6-10, (2003). [Google Scholar]
  • Stratford BS. The calculation of the discharge coefficient of profiled choked nozzles and optimum profile for absolute air flow measurement. J Royal Aeronautic Society; 68:237–45 (1964). [CrossRef] [Google Scholar]
  • Kurganov A., Noelle S., and Petrova G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton – jacobi equations. J. Comput. Phys, 160:720–742, (2000). [Google Scholar]
  • Kurganov A. and Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection – diffusion equations. Journal of Computational Physics, 160(1):241 – 282, (2000). [Google Scholar]
  • P.R. Spalart and S.R. Allmaras. A One-Equation Turbulence Model for Aerodynamic Flows. Recherche Aerospatiale, 1:5–21, (1994). [Google Scholar]
  • Hans W Stock and Werner Haase. Feasibility study of e transition prediction in navier-stokes methods for airfoils. AIAA journal, 37(10):1187–1196, (1999). [CrossRef] [Google Scholar]
  • J. P. Vallet, G. Miault, C. Windenberger, P. Manrot, P. Kervevan, The conception and the construction of a new High Pressure Primary Facility for Gas, Proceedings of 8th International Symposium on Fluid Flow Measurement, Colorado Springs, Colorado, (2012). [Google Scholar]