Open Access
Numéro
2019
19th International Congress of Metrology
Numéro d'article 19001
Nombre de pages 7
Section Biology - Health / Biologie-Santé
DOI https://doi.org/10.1051/metrology/201919001
Publié en ligne 23 septembre 2019
  • Vrushali R. Korde et al, Using Optical Coherence Tomography to Evaluate Skin Sun Damage and Precancer, Lasers Surg Med. 2007 Oct; 39(9): 687–695. [CrossRef] [PubMed] [Google Scholar]
  • Francine Celise Siqueira et al, Pilot-study of photodamaged skin and melasma using reflectance confocal microscopy, Surg Cosmet Dermatol. Rio de Janeiro v.10 n.2 abr-jun. 2018 [Google Scholar]
  • Biomimic optical phantoms, www.ino.ca/Biomimic-Optical-Phantom [Google Scholar]
  • Guy Lamouche et al, Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography, Biomed Opt Express.; 3(6): 1381–1398. 2012 [CrossRef] [PubMed] [Google Scholar]
  • US patent 6224969 B1, “Optical phantom suitable for stimulating the optical properties of biological material and a method of producing said phantom”, 2001. [Google Scholar]
  • US patent 20170122915 A1, “PVCP phantoms and their use”, 2017. [Google Scholar]
  • Anatomy Atlases: Atlas of Microscopic Anatomy: Section 7: Integument. http://www.anatomyatlases.org/MicroscopicAnatomy/Section07/Section07.shtml. [Google Scholar]
  • H. Ding et al., “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm”, Phys. Med. Biol. 51(6), 1479, 2006. [CrossRef] [PubMed] [Google Scholar]
  • G. J. Tearney et al., “Determination of the refractive-index of highly scattering human tissue by optical coherence tomography, ” Opt. Lett. 20(21), 2258–2260, 1995. [CrossRef] [PubMed] [Google Scholar]
  • Tom Lister, et al., “Optical properties of human skin”, J. of biomedical optics 17 (9), 2012 [Google Scholar]
  • Milind Rajadhyaksha et al. “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast”, Journal of Investigative Dermatology 104.6, pp. 946–952, 1995. [CrossRef] [Google Scholar]
  • Kervrann, C., Trubuil, A., “An adaptive window approach for poisson noise reduction and structure preserving in confocal microscopy”, Proc. of ISBI, pp. 788–791, 2004. [Google Scholar]
  • M. Laasmaa, M. Vendelin, and P. Peterson, “Application of regularized Richardson–Lucy algorithm for deconvolution of confocal microscopy images”, J. of Microscopy, Vol. 243, Issue 2, pp. 124–140, 2011. [CrossRef] [Google Scholar]
  • Von Tiedemann M, Fridberger A, Ulfendahl M, Tomo I, Boutet de Monvel J., “Image adaptive point-spread function estimation and deconvolution for in vivo confocal microscopy”, Microscopy Research & Technique, Vol. 69, Issue 1, pp. 10-20, 2006. [CrossRef] [Google Scholar]