Open Access
18th International Congress of Metrology
Numéro d'article 09002
Nombre de pages 5
Section Metrology 4.0 / Métrologie 4.0
Publié en ligne 18 septembre 2017
  • J. Dean and S. Ghemawat, Commun. ACM, 51, 107–113 (2008). [CrossRef] [Google Scholar]
  • S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google file system, in: ACM SIGOPS Oper. Syst. Rev., ACM, (2003), pp. 29–43. [CrossRef] [Google Scholar]
  • F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and others, J. Mach. Learn. Res., 12, 2825–2830 (2011). [Google Scholar]
  • T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, in: Proc. 22nd Acm Sigkdd Int. Conf. Knowl. Discov. Data Min., ACM, (2016), pp. 785–794. [CrossRef] [Google Scholar]
  • C.-C. Chang and C.-J. Lin, ACM Trans. Intell. Syst. Technol. TIST, 2, 27 (2011). [Google Scholar]
  • M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten, ACM SIGKDD Explor. Newsl., 11, 10–18 (2009). [CrossRef] [Google Scholar]
  • J. Bergstra, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Desjardins, I. Goodfellow, A. Bergeron, Y. Bengio, and P. Kaelbling, (2011). [Google Scholar]
  • M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, and others, ArXiv Prepr. ArXiv160304467, (2016). [Google Scholar]
  • Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, Caffe: Convolutional architecture for fast feature embedding, in: Proc. 22nd ACM Int. Conf. Multimed., ACM, (2014), pp. 675–678. [Google Scholar]
  • F. Chollet and others, “Keras”, (2015). [Google Scholar]
  • G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A.W.M. van der Laak, B. van Ginneken, and C.I. Sánchez, ArXiv170205747 Cs, (2017). [Google Scholar]
  • C.A. Ronao and S.-B. Cho, Expert Syst. Appl., 59, 235–244 (2016). [CrossRef] [Google Scholar]
  • M.M.A. Rahhal, Y. Bazi, H. AlHichri, N. Alajlan, F. Melgani, and R.R. Yager, Inf. Sci., 345, 340–354 (2016). [CrossRef] [Google Scholar]
  • M.S. Singh, V. Pondenkandath, B. Zhou, P. Lukowicz, and M. Liwicki, ArXiv170101077 Cs, (2017). [Google Scholar]
  • A. Jain, H.S. Koppula, S. Soh, B. Raghavan, A. Singh, and A. Saxena, ArXiv160100740 Cs, (2016). [Google Scholar]
  • F.J. Ordóñez and D. Roggen, Sensors, 16, 115 (2016). [CrossRef] [Google Scholar]
  • P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, Front. Neurosci., 7, (2013). [Google Scholar]
  • V. Venkatasubramanian and K. Chan, AIChE J., 35, 1993–2002 (1989). [CrossRef] [Google Scholar]
  • S.A. Mandavgane, M.A. Siddiqui, A. Dubey, and S.L. Pandharipande, Chem. Eng. World, 39, 75–77 (2004). [Google Scholar]
  • K. Yetilmezsoy and S. Demirel, J. Hazard. Mater., 153, 1288–1300 (2008). [Google Scholar]
  • M. Paganini, L. de Oliveira, and B. Nachman, ArXiv170502355 Hep-Ex Physicshep-Ph Stat, (2017). [Google Scholar]
  • G.B. Goh, C. Siegel, A. Vishnu, N.O. Hodas, and N. Baker, ArXiv170606689 Cs Stat, (2017). [Google Scholar]
  • Y. Li, W. Zhao, and J. Pan, IEEE Trans. Autom. Sci. Eng., 14, 1256–1264 (2017). [CrossRef] [Google Scholar]
  • M. Tehrani and M. Ahmadi, SciRate, (2017). [Google Scholar]
  • Z. Li, S. Wang, Y. Yu, and J. Xu, ArXiv170407207 Cs Q-Bio, (2017). [Google Scholar]
  • L. Breiman, Stat. Sci., 16, 199–231 (2001). [Google Scholar]
  • N. Rana, Y. Zhang, D. Wall, and B. Dirahoui, Predictive data analytics and machine learning enabling metrology and process control for advanced node IC fabrication, in: 2015 26th Annu. SEMI Adv. Semicond. Manuf. Conf. ASMC, (2015), pp. 313–319. [CrossRef] [Google Scholar]
  • J. Moyne, J. Samantaray, and M. Armacost, Big data emergence in semiconductor manufacturing advanced process control, in: 2015 26th Annu. SEMI Adv. Semicond. Manuf. Conf. ASMC, (2015), pp. 130–135. [CrossRef] [Google Scholar]
  • Y.-J. Chang, Y. Kang, C.-L. Hsu, C.-T. Chang, and T.Y. Chan, Virtual Metrology Technique for Semiconductor Manufacturing, in: 2006 IEEE Int. Jt. Conf. Neural Netw. Proc., (2006), pp. 5289–5293. [Google Scholar]
  • J.C. Yung-Cheng and F.-T. Cheng, Application development of virtual metrology in semiconductor industry, in: 31st Annu. Conf. IEEE Ind. Electron. Soc. 2005 IECON 2005, (2005), p. 6 pp.-. [Google Scholar]
  • M.H. Hung, T.H. Lin, F.T. Cheng, and R.C. Lin, IEEEASME Trans. Mechatron., 12, 308–316 (2007). [CrossRef] [Google Scholar]
  • S. Singh and V. Kumar, ArXiv160907597 Cs, (2016). [Google Scholar]
  • F. Liao, X. Chen, X. Hu, and S. Song, ArXiv170203833 Cs, (2017). [Google Scholar]
  • M. Ye, E. Johns, A. Handa, L. Zhang, P. Pratt, and G.-Z. Yang, ArXiv170508260 Cs, (2017). [Google Scholar]
  • I.S. Fomin, A.V. Bakhshiev, and D.A. Gromoshinskii, Procedia Comput. Sci., 103, 59–66 (2017). [CrossRef] [Google Scholar]
  • J. Fenn and M. Raskino, “Mastering the hype cycle: how to choose the right innovation at the right time”, Harvard Business Press, (2008). [Google Scholar]
  • R.L. Martin, “The design of business: Why design thinking is the next competitive advantage”, Harvard Business Press, (2009). [Google Scholar]
  • K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, and others, (2001). [Google Scholar]
  • S. Blank, Harv. Bus. Rev., 91, 63–72 (2013). [Google Scholar]
  • E. Ries, “The lean startup: How today’s entrepreneurs use continuous innovation to create radically successful businesses”, Crown Books, (2011). [Google Scholar]