Open Access
Issue |
2019
19th International Congress of Metrology
|
|
---|---|---|
Article Number | 09007 | |
Number of page(s) | 22 | |
Section | Dimensional / Dimensionnel | |
DOI | https://doi.org/10.1051/metrology/201909007 | |
Published online | 23 September 2019 |
- ISO 1101, Geometrical Product Specifications (GPS) -Geometrical tolerancing -Tolerances of form, orientation, location and run-out (2004) [Google Scholar]
- T. Toman, B. V. Gashi, Expanding the possibilities through the application of measurement knowledge, technology, skills and standards; measurement uncertainty as an enabler for validation and confidence in measurement data and data sharing – Task Specific Uncertainty, EPMC Conference, Coventry (2018) [Google Scholar]
- Rolls-Royce plc., The jet engine (4th ed.), Derby: Rolls-Royce (1986) [Google Scholar]
- R. Flack, Fundamentals of jet propulsion with applications (Cambridge aerospace series ; 17), Cambridge University Press, (2011) [Google Scholar]
- Gleason, Curvic Coupling Design, 1000 University Ave, Rochester, NY, 14603, USA https://www.geartechnology.com/issues/1186x/Back-to-Basics.pdf [Google Scholar]
- H. H. Nørgaard, E. Savio, L. De Chiffre, Traceability and Uncertainty Estimation in Coordinate Metrology, Ed. pp. 363-368. Proc. of Prime, http://www.forskningsdatabasen.dk/en/catalog/2389446799, (2001) [Google Scholar]
- JCGM 200, International vocabulary of metrology – Basic and general concepts and associated terms (VIM), https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf, (2012) [Google Scholar]
- JCGM 100, Evaluation of measurement data — Guide to the expression of uncertainty in measurement, https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf, (2008) [Google Scholar]
- ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories, https://www.iso.org/standard/66912.html, (2017) [Google Scholar]
- ISO 14253-1, Geometrical product specifications (GPS) -Inspection by measurement of workpieces and measuring equipment -Part 1: Decision rules for verifying conformity or nonconformity with specifications, https://www.iso.org/standard/70137.html, (2017) [Google Scholar]
- R. G. Wilhelm, R. J. Hocken, H. Schwenke, Task specific uncertainty in coordinate measurement, CIRP annals, 50(2), pp.553-563, https://doi.org/10.1016/S00078506(07)62995-3, (2001) [CrossRef] [Google Scholar]
- ISO 9001, Quality management systems — Requirements, https://www.iso.org/standard/62085.html, (2015) [Google Scholar]
- A. Weckenmann, M. Knauer, H. Kunzmann, The influence of measurement strategy on the uncertainty of CMM-measurements, CIRP Annals, 47(1), pp.451-454, https://doi.org/10.1016/S0007-8506(07)62872-8, (1998) [CrossRef] [Google Scholar]
- C. Porta, F. Wäldele, Testing of three coordinate measuring machine evaluation algorithms, Office for Official Publications of the European Communities, (1986) [Google Scholar]
- N. V. Gestel, P. Bleys, F. Welkenhuyzen, J. P. Kruth, Influence of feature form deviations on CMM measurement uncertainties, Int. J. of Prec. Tech., 2(2-3), pp.192-210, (2011) [CrossRef] [Google Scholar]
- S. D. Phillips, B. Borchardt, G. Caskey, Measurement uncertainty considerations for coordinate measuring machines, NASA STI/Recon Technical Report N, 93.1993STIN...9331196P, (1993) [Google Scholar]
- R. J. Hocken, Sampling issues in coordinate metrology, Manufacturing Review, 6(4), pp.282-294, (1993) [Google Scholar]
- A. Balsamo, G. Colonnetti, M. Franke, E. Trapet, F. Wäldele, L. De Jonge, P. Vanherck, Results of the CIRP-Euromet inter-comparison of ball plate-based techniques for determining CMM parametric errors. CIRP Annals, 46(1), pp.463-466, https://doi.org/10.1016/S0007-8506(07)60866-X, (1997) [CrossRef] [Google Scholar]
- H. N. Hansen, L. De Chiffre, An industrial comparison of coordinate measuring machines in Scandinavia with focus on uncertainty statements, Precision engineering, 23(3), pp.185-195, https://doi.org/10.1016/S0141-6359(99)00009-4, (1999) [Google Scholar]
- B. V. Gashi, Thermal and deformation analysis of machine tool joint interfaces (PhD thesis), Cranfield University, Cranfield, UK, (2008) [Google Scholar]
- C. Sanz, C. Giusca, P. Morantz, A. Marin, A. Chérif, J. Schneider, H. M. Durand, P. Shore, N. Steffens, Form measurement of a 0.1 mm diameter wire with a chromatic confocal sensor, with associated uncertainty evaluation, Measurement Science and Technology, 29(7), p.074010, http://iopscience.iop.org/article/10.1088/13616501/aac352/meta, (2018) [CrossRef] [Google Scholar]
- H. Schwenke, F. Härtig, K. Wendt, F. Wäldele, Future challenges in co-ordinate metrology: addressing metrological problems for very small and very large parts, Proc. of IDW conference, Knoxville (pp. 1-12), (2001) [Google Scholar]
- K. Kniel, F. Haertig, K. Rost, GI-07 Automatic determination of the measurement uncertainty for involute gear measurands (inspection of gears), The Proc. JSME international conference on motion and power transmissions, 2009(0), pp.203-207, https://doi.org/10.1299/jsmeimpt.2009.203, (2009) [CrossRef] [Google Scholar]
- N. B. Orchard, Inspection of Curvic couplings using a CMM, Trans. on Eng. Sci., Vol. 44, © 2003 WIT Press, www.witpress.com, ISSN 1743-3533, (2003) [Google Scholar]
- K. Rost, K. Wendt, F. Härtig, Evaluating a task-specific measurement uncertainty for gear measuring instruments via Monte Carlo simulation, Prec. Eng., 44, pp.220-230, https://doi.org/10.1016/j.precisioneng.2016.01.001, (2016) [CrossRef] [Google Scholar]
- M. G. Cox, A. B. Forbes, G. N. Peggs, Simulation techniques for uncertainty estimation in co-ordinate metrology, NPL Report, UK, (2001) [Google Scholar]
- M. G. Cox, B. R. Siebert, The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty. Metrologia, 43(4), p.S178, (2006) [Google Scholar]
- A. B. Forbes, P. N. Harris, Simulated instruments and uncertainty estimation, NPL – UK, Centre for Mathematics and Scientific Computing, (2000) [Google Scholar]
- J. Sładek, A. Gąska, Evaluation of coordinate measurement uncertainty with use of virtual machine model based on Monte Carlo method, Measurement, 45(6), pp.15641575, (2012) [Google Scholar]
- S. Aguado, P. Pérez, J.A. Albajez, J. Velázquez, J. Santolaria. Monte Carlo method to machine tool uncertainty evaluation, Proc. Man., V(13), pp. 585-592, ISSN 23519789, https://doi.org/10.1016/j.promfg.2017.09.105, (2017) [Google Scholar]
- F. Aggogeri, G. Barbato, E. M. Barini, G. Genta, R. Levi, Measurement uncertainty assessment of Coordinate Measuring Machines by simulation and planned experimentation, CIRP (JMST), 4(1), pp.51-56, (2011) [Google Scholar]
- M. Papananias, S. Fletcher, A. P. Longstaff, A. Mengot, K. Jonas, A. B. Forbes, Modelling uncertainty associated with comparative coordinate measurement through analysis of variance techniques, 17th International Conference of the EUSPEN, pp. 407-408, https://www.scopus.com/inward/record.uri?eid=2-s2.0-, (2017) [Google Scholar]
- M. Papananias, S. Fletcher, A. Longstaff, A. Mengot, A novel method based on Bayesian regularized artificial neural networks for measurement uncertainty evaluation, 16th International Conference of the EUSPEN, https://www.scopus.com/inward/record.uri?eid=2-s2.0-, (2016) [Google Scholar]
- Hexagon manufacturing intelligence, Leitz PMM-C Ultra-High Precision CMM and Gear Measuring System, https://www.hexagonmi.com/products/coordinate-measuringmachines/bridge-cmms/leitz-pmmc, (2018) [Google Scholar]
- ISO 10360-5, Geometrical product specifications (GPS) -Acceptance and reverification tests for coordinate measuring machines (CMM) -Part 5: CMMs using single and multiple stylus contacting probing systems, (2010) [Google Scholar]
- ISO/TS 23165, Geometrical product specifications (GPS) -Guidelines for the evaluation of coordinate measuring machine (CMM) test uncertainty, (2006) [Google Scholar]
- ISO 10360-2, Geometrical product specifications (GPS) -Acceptance and re-verification tests for coordinate measuring machines (CMM) -Part 2: CMMs used for measuring linear dimensions, (2009) [Google Scholar]
- ISO/TS 23165, Geometrical product specifications (GPS) -Guidelines for the evaluation of coordinate measuring machine (CMM) test uncertainty, (2006) [Google Scholar]
- ISO 1, Geometrical product specifications (GPS) -Standard reference temperature for the specification of geometrical and dimensional properties, (2016) [Google Scholar]
- UKAS M3003. Ed. 3. The Expression of Uncertainty and Confidence in Measurement, (2012) [Google Scholar]
- International Atomic Energy Agency (IAEA), Measurement Uncertainty: A Practical Guide for Secondary Standards Dosimetry Laboratory, IAEA-TECDOC-1585, (2018). [Google Scholar]
- D. Zwillinger, CRC Standard Mathematical Tables and Formulas (Advances in Applied Mathematics), 33rd Edition, (2018) [Google Scholar]
- T. Doiron, J. Stoup, Uncertainty and dimensional calibrations. J. R. (NIST), 102(6), p.647, (1997) [Google Scholar]
- Granta Design, CES EduPack Software—Material Level 3. [online] Grantadesign.com, (2019) [Google Scholar]
- M. J. Puttock, E. G. Thwaite, Elastic compression of spheres and cylinders at point and line contact; Melbourne, Australia: Commonwealth Scientific and Industrial Research Organization, (1969) [Google Scholar]
- N. S. Mian, S. Fletcher, A. P. Longstaff, Reducing the latency between machining and measurement using FEA to predict thermal transient effects on CMM measurement. Measurement, 135, pp.260-277, https://doi.org/10.1016/j.measurement.2018.11.034, (2019) [CrossRef] [Google Scholar]