Open Access
Issue
2015
17th International Congress of Metrology
Article Number 13003
Number of page(s) 21
Section Tendance en métrologie 3D / Trends in coordinate measurement
DOI https://doi.org/10.1051/metrology/20150013003
Published online 21 September 2015
  • G. Vosselman, H. Mass (Ed.), Airborne and Terrestrial Laser Scanning (Whittles Publishing 2010) [Google Scholar]
  • N. Pears, Y. Liu, and P. Bunting (Ed.), 3D Imaging, Analysis and Applications (Springer-Verlag 2012) [CrossRef] [Google Scholar]
  • R. Leach (Ed.) Optical Measurement of Surface Topography (Springer-Verlag 2011) [CrossRef] [Google Scholar]
  • T. Luhmann, S. Robson, S. Kyle, J. Boehm, Close-Range Photogrammetry and 3D Imaging (De Gruyter Textbook, 2nd ed. xviii, 2013) [Google Scholar]
  • ISO/IEC Guide 2:2004, Standardization and related activities - General vocabulary. [Google Scholar]
  • JCGM, International vocabulary of metrology, 3rd edition, JCGM 200 (2012) [Google Scholar]
  • R.F. Aubin, A World Wide Assessment of Rapid Prototyping Technologies, Report No.9413 (United Technologies Research Center, East Hartford, CT 06108, Jan. 1994) [Google Scholar]
  • J.-A. Beraldin, B. Carrier, D. MacKinnon, L. Cournoyer, “Characterization of Triangulation-Based 3D Imaging Systems Using Certified Artifacts”, NCSL International Measure: The Journal of Measurement Science 12/2012; 7(4), 80. [Google Scholar]
  • D.J. Whitehouse, Handbook of surface and nanometrology (CRC Press 1993) [Google Scholar]
  • K. J. Stout, L. Blunt, Three dimensional surface topography (Butterworth Heinemann June 2000) [Google Scholar]
  • R. Leach, Characterisation of areal surface texture (Springer-Verlag 2013) [CrossRef] [Google Scholar]
  • ISO/TC 213 Dimensional and geometrical product specifications and verification. WG 16 Areal and profile surface texture. [Google Scholar]
  • T. Luhmann, K. Wendt, “Recommendations for an acceptance and verification test of optical 3-D measurement systems”, International Archives of Photogrammetry and Remote Sensing. Vol. 13003III/B5 493–500 (Amsterdam 2000) [Google Scholar]
  • VDI, Optical 3D measuring systems, VDI/VDE 2634. [Google Scholar]
  • C.P. Keferstein, R., Züst, “Minimizing technical and financial risk when integrating and applying optical sensors for in-process measurement”, IMS International Forum, 475–482 (2004). [Google Scholar]
  • S. Carmignato, “Experimental study on performance verification tests for coordinate measuring systems with optical distance sensors”, Three-Dimensional Imaging Metrology, Proc. of SPIE-IS&T Electronic Imaging, SPIE 7239, 72390I, 2009. [CrossRef] [Google Scholar]
  • ISO, Geometrical Product Specifications (GPS) - Acceptance and reverification tests for coordinate measuring machines (CMM), ISO 10360. [Google Scholar]
  • G.S. Cheok, A. M. Lytle, K. S. Saidi, “ASTM E57 3D imaging systems committee: An update”, Proceedings of SPIE - The International Society for Optical Engineering (Impact Factor: 0.2). 05 (2008) [Google Scholar]
  • ASTM (E57), Committee E57 on 3D Imaging Systems, ASTM International. [Google Scholar]
  • R. Gottwald, Field Procedures for Testing Terrestrial Laser Scanners (TLS) A Contribution to a Future ISO Standard (FIG 2008) [Google Scholar]
  • ISO, Optics and optical instruments—Field procedures for testing geodetic and surveying instruments, ISO 17123. [Google Scholar]
  • ISO, Optics and optical instruments - Laboratory procedures for testing surveying and construction instruments, ISO 16331. [Google Scholar]
  • ISO 25178–3:2012, Geometrical product specifications (GPS) - Surface texture: Areal - Part 3: Specification operators. [Google Scholar]
  • ISO 16610 - Geometrical product specifications (GPS)–Filtration. [Google Scholar]
  • R.K. Leach, H. Haitjema, Limitations and comparisons of surface texture measuring instruments, Meas. Sci. Technol. 21, 32001 (2010). [CrossRef] [Google Scholar]
  • B46.1—2009, Surface Texture (Surface Roughness, Waviness, and Lay). [Google Scholar]
  • X. J. Jiang, D.J. Whitehouse, Technological shifts in surface metrology, CIRP Annals - Manufacturing Technology, 61(2), 815–836, (2012) [CrossRef] [Google Scholar]
  • C.L. Giusca, R.K. Leach, “Calibration of the metrological characteristics of Imaging Confocal Microscopes (ICMs), Measurement Good Practice Guide No. 128 National Physical Laboratory. (2013) [Google Scholar]
  • R.K. Leach, “Some issues of traceability in the field of surface topography measurement”, Wear, 257/12, 1246–1249 (2004) [CrossRef] [Google Scholar]
  • Y. Zhou, A.P. Fard, A. Davies,” Characterization of instrument drift using a spherical artifact”, Precision Engineering, 38(2), 443–447 (2014) [CrossRef] [Google Scholar]
  • R.K. Leach, C.L. Giusca, P. Rubert, “A single set of material measures for the calibration of areal surface topography measuring instruments: the NPL Areal Bento Box, Metrology and Properties of Engineering Surfaces, 2013”: Proc. of the 14th International Conference (14th MPES), 17–21 June 2013, Taipei, Taiwan, 406–413 (2013) [Google Scholar]
  • R.K. Leach, C. Evans, L. He, A. Davies, A. Duparré, A. Henning, C.W. Jone, D. O’Connor, Open questions in surface topography measurement: a roadmap, Surf. Topogr.: Metrol. Prop. 3, 013001 (2015) [CrossRef] [Google Scholar]
  • W. Ehrig, U. Neuschaefer-Rube, Artefacts with rough surfaces for verification of optical micro-sensors, Proc. SPIE 6616, Optical Measurement Systems for Industrial Inspection V, 661626 (18 June 2007) [CrossRef] [Google Scholar]
  • U. Neuschaefer-Rube; M. Neugebauer, T.Dziomba, H.U. Danzebrink, L. Koenders, H. Bosse, New developments of measurement standards and procedures for micro and nanometrology, PTB, 11th International Symposium on Measurement and Quality Control Sept. 11–13, Cracow-Kielce, Poland (2013) [Google Scholar]
  • VDI-Standard: VDI/VDE 2617 Blatt 6.2 Accuracy of coordinate measuring machines - Characteristics and their testing - Guideline for the application of DIN EN ISO 10360 to coordinate measuring machines with optical distance sensors. http://www.vdi.eu/ (last accessed June 2015) [Google Scholar]
  • ISO 14253-1 1998 Geometrical product specifications (GPS) - Inspection by measurement of workpieces and measuring equipment - Decision rules for proving conformity or nonconformity with specifications. [Google Scholar]
  • ISO 23165:2006 Geometrical product specifications (GPS) - Guidelines for the evaluation of coordinate measuring machine (CMM) test uncertainty. [Google Scholar]
  • ISO 10360–8: 2013 – Acceptance and reverification tests for coordinate measuring machine (CMM) – Part 8: CMMs with optical distance sensors. [Google Scholar]
  • A. Voltan, Metrological performance verification of optical Coordinate Measuring Systems [PhD thesis], 163 pp. University of Padova, Italy (2010) [Google Scholar]
  • Robson, S., Beraldin, J.-A., Brownhill, A., MacDonald, L., “Artefacts for optical surface measurement”, Videometrics, Range Imaging, and Applications XI, 8085(1) (25 May 2011) [Google Scholar]
  • G. Guidi, M., Russo, G., Magrassi, M., Bordegoni, “Resolution characterization of 3D cameras”, Proc. SPIE 7239, Three-Dimensional Imaging Metrology, 72390O (January 19, 2009) [Google Scholar]
  • ASTM (E57 E2544 – 11a), Committee E57 on 3D Imaging Systems, Standard Terminology for Three-Dimensional (3D) Imaging Systems, doi 10.1520/E2544-11A, ASTM International. [Google Scholar]
  • E. Savio, L. De Chiffre, R. Schmitt, “Metrology of freeform shaped parts”, CIRP Annals Manufacturing Technology 56/2, 810–835 (2007) [Google Scholar]
  • H. Schwenke, F. Wäldele, K. Wendt, Abnahme, Überwachung und Kalibrierung von flexiblen Industriemeßsystemen mit CCD-Kameras, Final report of project: Flexible 3-D-Industrie-messsysteme (EA-3-DIMSY), (1998). [Google Scholar]
  • B. Acko, M. McCarthy, F. Haertig, B. Buchmeister, “Standards for testing freeform measurement capability of optical and tactile coordinate measuring machines”, Meas. Sci. Technol. 23 094013 (2012) [CrossRef] [Google Scholar]
  • L. Iuliano, P. Minetola, A. Salmi, “Proposal of an innovative benchmark for comparison of the performance of contactless digitizers”, Meas. Sci. Technol. 21, 105102–105114 (2010) [CrossRef] [Google Scholar]
  • D. MacKinnon, B. Carrier, J.-A. Beraldin, L. Cournoyer, GD&T-Based Characterization of Short-Range Non-contact 3D Imaging Systems, Int J Comput Vis. 102, 56–72 (2013) [Google Scholar]
  • G.S. Lane, “The application of stereographic techniques to the scanning electron microscope”, Journal of Physics E. Scientific Instruments 2, 565 (1969) [CrossRef] [Google Scholar]
  • T. Luhmann, F. Bethmann, B. Herd, J. Ohm, “Comparison and verification of optical 3-d surface measurement systems”, The Intern. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V. 13003VII. Part B5, 51–56 (2008) [Google Scholar]
  • I. Toschi, J.-A. Beraldin, L. Cournoyer, L. De Luca, A. Capra, “Evaluating Dense 3D Surface Reconstruction Techniques using a Metrological Approach”, NCSLI Measure J. Meas. Sci., 10/1, 38–48 (2015). [Google Scholar]
  • X. Colonna de Lega, P. J. de Groot, “Lateral resolution and instrument transfer function as criteria for selecting surface metrology instruments”, Imaging and Applied Optics Digest (2012) [Google Scholar]
  • R. Leach and B. Sherlock, Applications of super-resolution imaging in the field of surface topography measurement, Surf. Topogr.: Metrol. Prop. 2 (2014) 023001. [CrossRef] [Google Scholar]
  • D. MacKinnon, J.-A. Beraldin, L. Cournoyer, M. Picard, F. Blais, “Lateral resolution challenges for triangulation-based three-dimensional imaging systems”, Optical Engineering 03, 51(2) (2012) [Google Scholar]