Open Access
Issue
2013
16th International Congress of Metrology
Article Number 04001
Number of page(s) 6
Section Outils mathématiques / Mathematical tools
DOI https://doi.org/10.1051/metrology/201304001
Published online 07 October 2013
  • JCGM 100:2008, Evaluation ofMeasurement Data – Guide to the Expression of Uncertainty in Measurement, (GUM, originally published in 1993), Joint Committee for Guides in Metrology (2008) [Google Scholar]
  • A. Ferrero, S. Salicone, IEEE Trans. Instrum. Meas. 61, 2167 (2012) [CrossRef] [Google Scholar]
  • G. Shafer, A Mathematical Theory of Evidence (Princeton Univ. Press, Princeton, NJ, USA, 1976) [Google Scholar]
  • G. Mauris, L. Berrah, L. Foulloy, A. Haurat, IEEE Trans. Instrum. Meas. 49, 89 (2000) [CrossRef] [Google Scholar]
  • M. Urbanski, J. Wasowsky, Measurement, Elsevier Science 34, 67 (2003) [Google Scholar]
  • A. Ferrero, S. Salicone, IEEE Trans. Instrum. Meas. 53, 1370 (2004) [CrossRef] [Google Scholar]
  • A. Ferrero, S. Salicone, The theory of evidence for the expression of uncertainty in measurement, in 12 International Metrology Congress (Lyon, France, 2005), pp. 1–6 [Google Scholar]
  • A. Ferrero, S. Salicone, An innovative method for the comparison of measurement results, in 13 International Congress of Metrology (Lille, France, 2007), pp. 1–5 [Google Scholar]
  • A. Ferrero, M. Prioli, S. Salicone, IEEE Trans. Instrum. Meas. 61, 2972 (2012) [CrossRef] [Google Scholar]
  • Q. Zhu, Z. Jiang, Z. Zhao, H. Wang, Review of Scientific Instruments 77 (2006) [Google Scholar]
  • M. Pertile, M. De Cecco, L. Baglivo, IEEE Trans. Instrum. Meas. 59, 2816 (2010) [CrossRef] [Google Scholar]
  • A. Ferrero, R. Ferrero, M. Prioli, S. Salicone, An extension of the conditional probability concept to Random-Fuzzy Variables representing measurement result, in 15 International Congress of Metrology (Paris, France, 2011), pp. 1–6 [Google Scholar]
  • S. Salicone, Measurement Uncertainty: an approach via the mathematical theory of evidence, Springer series in reliability engineering (Springer, New York, NY, USA, 2007), ISBN 0387306552 [Google Scholar]
  • G.J. Klir, B. Yuan, Fuzzy sets and fuzzy logic. Theory and applications (Prentice Hall PTR, Englewood Cliffs, NJ, USA, 1995), ISBN 978-0-13-101171-7 [Google Scholar]
  • A. Ferrero, S. Salicone, IEEE Trans. Instrum. Meas. 58, 365 (2009) [Google Scholar]
  • D. Dubois, L. Foulloy, G. Mauris, H. Prade, Reliable Computing. Kluwer Academic Publishers 10, 273 (2004) [Google Scholar]
  • A. Ferrero, M. Prioli, S. Salicone, B. Vantaggi, IEEE Trans. Instrum. Meas. 62, 982 (2013) [CrossRef] [Google Scholar]
  • A. Ferrero, M. Prioli, S. Salicone, IEEE Trans. Instrum. Meas. 4, 720 (2013) [CrossRef] [Google Scholar]
  • A. Ferrero, M. Prioli, S. Salicone (2013), accepted for publication on IEEE Trans. Instrum. Meas. [Google Scholar]
  • L.A. Zadeh, Fuzzy Sets and Systems 1, 3 (1978) [CrossRef] [MathSciNet] [Google Scholar]
  • E.P. Klement, R. Mesiar, E. Pap, Triangular Norms (Kluwer, Dordrecht, Netherlands, 2000), ISBN 0792364163 [Google Scholar]
  • M. Frank, Aequationes mathematicae 19, 141 (1979) [Google Scholar]