Open Access
Numéro |
2015
17th International Congress of Metrology
|
|
---|---|---|
Numéro d'article | 01003 | |
Nombre de pages | 6 | |
Section | Energies renouvelables / Renewable energy | |
DOI | https://doi.org/10.1051/metrology/20150001003 | |
Publié en ligne | 21 septembre 2015 |
- E. Von Lavante, S. Poggel, H. Kaya, M. Franz, Numerical Simulation of Flow in Rotor-Casing Gap of a Rotary Piston Flow Meter, Proc. of 14th Int. Flow Measurement Conf., (2010). [Google Scholar]
- P. N. Shankar, M. D. Deshpande, Fluid Mechanics in the Driven Cavity, Annu. Rev. Fluid Mech., pp. 93–136, (2000) [CrossRef] [Google Scholar]
- S. Albensoeder, H. C. Kuhlmann, H. J. Rath, Three-Dimensional Centrifugal-Flow Instabilities in the Lid-Driven-Cavity Problem, Phys. Fluids, 13, 121, (2001) [CrossRef] [Google Scholar]
- A. K. Prassad, J. R. Koseff, Reynolds Number and End-Wall Effects on a Lid-Driven Cavity Flow, Phys. Fluids, A 1, 208, (1989) [Google Scholar]
- A. Ranseth, Reynolds Number Calibration of Turbine Meters, TransCanada calibrations, www.cga.ca/events/documents/ransethalan.pdf. [Google Scholar]
- J. G. Pope, J, D. Wriht, A. N. Johnson, M. R. Moldover Extended Lee Model for the Turbine Meter and Calibration With Surrogate Fluids, Flow meas. and instr., 24, pp. 71–82, (2012) [CrossRef] [Google Scholar]
- P.W. Tang, High-Pressure Calibration of Gas Turbine Meters Using the Reynolds Number Methods, http://www.asgmt.com/default/papers/asgmt2009/docs/050.pdf. [Google Scholar]
- W. F. Z. Lee, H. J. Evans, Density Effects and Reynolds Number Effect on Gas Turbine Flowmeters, J. Basic Engineering, 87, 4, pp. 1043–1052, (1965) [CrossRef] [Google Scholar]
- S. De Jong, P. M. A. Kam, High Pressure Recalibration of Turbine Meters in Flow Measurement, Proc. of Flomeko’93, ISBN898–454–0180–6, (1993) [Google Scholar]