Open Access
Issue
2015
17th International Congress of Metrology
Article Number 07003
Number of page(s) 9
Section Environnement et climat / Environment and climate
DOI https://doi.org/10.1051/metrology/20150007003
Published online 21 September 2015
  • Bobrutzki K Von, Braban CF, Famulari D, et al. (2010) Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmos Meas Tech 3: 91–112. [CrossRef] [Google Scholar]
  • Veen AMH Van Der, Nieuwenkamp G, Wessel RM, et al. (2010) International Comparison CCQM K46 – Ammonia in Nitrogen. Metrologia. doi:10.1088/0026-1394/47/1A/08023 [Google Scholar]
  • MetNH3 project homepage. http://www.metnh3.eu/. [Google Scholar]
  • Protocol to the 1979 Convention on Long-range Transboundary Air Pollution to Abate Acidification, Eutrophication and Ground-Level Ozone. 1–94. [Google Scholar]
  • ECE/EB.AIR/111/Add.1, Decision 2012/12 Guidance for adjustments under the Gothenburg Protocol to emission reduction commitments or to inventories for the purposes of comparing total national emissions with them. 90–91. [Google Scholar]
  • Air Pollution Information System. http://www.apis.ac.uk/. [Google Scholar]
  • European Monitoring and Evaluation Programme (EMEP). http://www.emep.int/. [Google Scholar]
  • Norman M, Spirig C, Wolff V, et al. (2008) Intercomparison of ammonia measurement techniques at an intensively managed grassland site (Oensingen, Switzerland). Atmos Chem Phys Discuss 8: 19791–19818. [CrossRef] [Google Scholar]
  • Sutton MA, Nemitz E, Theobald MR, et al. (2009) Dynamics of ammonia exchange with cut grassland : strategy and implementation of the GRAMINAE Integrated Experiment. Biogeosciences 6: 309–331. [CrossRef] [Google Scholar]
  • ISO 6142:2006 Gas analysis. Preparation of calibration gas mixtures. Gravimetric method. [Google Scholar]
  • ISO 6145–10:2012-06, Gas analysis – Preparation of calibration gas mixtures using dynamic volumetric methods - Part 10: Permeation method. [Google Scholar]
  • LNI Schmidlin SA. www.lnischmidlin.ch. [Google Scholar]
  • Owlstone Ltd. www.owlsotnenanotech.com. [Google Scholar]
  • VICI AG International. www.vici.com. [Google Scholar]
  • Kin-Tek Laboratories Inc. www.kin-tek.com. [Google Scholar]
  • Horváth L, Sutton M a. (1998) Long-term record of ammonia and ammonium concentrations at K-puszta, Hungary. Atmos Environ 32: 339–344. [CrossRef] [Google Scholar]
  • Wyers GP, Otjes RP, Slanina J (1993) A continuous-flow denuder for the measurement of ambient concetrations and surface-exchange fluxes of ammonia. Atmos Environ 27A: 2085–2090. [CrossRef] [Google Scholar]
  • Erisman JW, Otjes R, Hensen A, et al. (2001) Instrument development and application in studies and monitoring of ambient ammonia. Atmos Environ 35: 1913–1922. [CrossRef] [Google Scholar]
  • Rumsey IC, Cowen K a., Walker JT, et al. (2014) An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): A semi-continuous method for soluble compounds. Atmos Chem Phys 14: 5639–5658. [CrossRef] [Google Scholar]
  • Buijsman E, Aben JMM, Van Elzakker BG, Mennen MG (1998) An automatic atmospheric ammonia network in The Netherlands: Set-up and results. Atmos Environ 32: 317–324. [CrossRef] [Google Scholar]
  • Norman M, Hansel A, Wisthaler A (2007) O2+ as reagent ion in the PTR-MS instrument: Detection of gas-phase ammonia. Int J Mass Spectrom 265: 382–387. [CrossRef] [Google Scholar]
  • Aerodyne Research Inc. http://www.aerodyne.com/. [Google Scholar]
  • Picarro Inc. www.picarro.com. [Google Scholar]
  • LosGatos Research Inc. http://www.lgrinc.com/. [Google Scholar]
  • LSE Monitors. www.lsemonitors.nl. [Google Scholar]
  • EcoPhysics GmBH. http://www.ecophysics.com/. [Google Scholar]
  • Nara H, Tanimoto H, Tohjima Y, et al. (2012) Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: Calibration and measurement strategy. Atmos Meas Tech 5: 2689–2701. [CrossRef] [Google Scholar]
  • Volten H, Bergwerff JB, Haaima M, et al. (2012) Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere. Atmos Meas Tech 5: 413–427. [CrossRef] [Google Scholar]
  • Miller DJ, Sun K, Tao L, et al. (2014) Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements. Atmos Meas Tech 7: 81–93. [CrossRef] [Google Scholar]
  • Vaittinen O, Metsälä M, Persijn S, et al. (2013) Adsorption of ammonia on treated stainless steel and polymer surfaces. Appl Phys B 115: 185–196. [CrossRef] [Google Scholar]
  • Mukhtar S, Rose AJ, Capareda SC, et al. (2003) Assessment of ammonia adsorption onto teflon and LDPE tubing. Agric Eng Int CIGR J V: 1–13. [Google Scholar]
  • Henningsen J, Melander N (1997) Sensitive measurement of adsorption dynamics with nonresonant gas phase photoacoustics. Appl Opt 36: 7037–7045. [CrossRef] [PubMed] [Google Scholar]
  • Roscioli J, Herndon S, Zahniser M, et al. (2015) Recent Advances in Detection of Ammonia and Nitric Acid on Short Timescales Suitable for Eddy Covariance Flux Measurements. Geophys Res Abstr 17: EGU015–7332. [Google Scholar]
  • Owen K, Farooq A (2014) A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f. Appl Phys B 116: 371–383. [CrossRef] [Google Scholar]
  • Rothman LS, Gordon IE, Babikov Y, et al. (2013) The HITRAN2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 130: 4–50. [NASA ADS] [CrossRef] [Google Scholar]
  • Owen K, Es-sebbar ET, Farooq A (2013) Measurements of NH3 linestrengths and collisional broadening coefficients in N2, O2, CO2, and H2O near 1103.46cm-1. J Quant Spectrosc Radiat Transf 121: 56–68. [CrossRef] [Google Scholar]
  • Pogány A, Wagner S, Werhahn O, Ebert V (2015) Development and Metrological Characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) Spectrometer for Simultaneous Absolute Measurement of Carbon Dioxide and Water Vapor. Appl Spectrosc 69: 257–268. [CrossRef] [PubMed] [Google Scholar]
  • Buchholz B, Böse N, Ebert V (2014) Absolute validation of a diode laser hygrometer via intercomparison with the German national primary water vapor standard. Appl Phys B 116: 883–899. [CrossRef] [Google Scholar]
  • Berglund M, Wieser ME (2011) Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl Chem 83: 397–410. [CrossRef] [Google Scholar]
  • Ellis R a., Murphy JG, Pattey E, et al. (2010) Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of atmospheric ammonia. Atmos Meas Tech 3: 397–406. [CrossRef] [Google Scholar]
  • Pogány A, Ott O, Werhahn O, Ebert V (2013) Towards traceability in CO2 line strength measurements by TDLAS at 2.7 µm. J Quant Spectrosc Radiat Transf 130: 147–157. [CrossRef] [Google Scholar]
  • Ortwein P, Woiwode W, Wagner S, et al. (2009) Laser-based measurements of line strength, self- and pressure-broadening coefficients of the H35Cl R(3) absorption line in the first overtone region for pressures up to 1 MPa. Appl Phys B 100: 341–347. [CrossRef] [Google Scholar]
  • Nielsen L (2002) Evaluation of measurements by the method of least squares. In: Levesley J, Andreson IJ, Mason JC (eds) Algorithms Approx. IV. University of Huddersfield, pp 170–186 [Google Scholar]
  • Whitehead JD, Twigg M, Famulari D, et al. (2008) Evaluation of Laser Absorption Spectroscopic Techniques for Eddy Covariance Flux Measurements of Ammonia. Environ Sci Technol 42: 2041–2046. [CrossRef] [PubMed] [Google Scholar]