Open Access
Issue
2013
16th International Congress of Metrology
Article Number 06004
Number of page(s) 5
Section Les avancées en mesure 3D et Dimensionnel / Advanced coordinate metrology & Dimensional
DOI https://doi.org/10.1051/metrology/201306004
Published online 07 October 2013
  • R. Boudjemaa, M. G. Cox, A. B. Forbes, and P. M. Harris. Automatic differentiation and its applications to metrology. In P. Ciarlini, M. G. Cox, F. Pavese, and G. B. Rossi, editors, Advanced Mathematical and Computational Tools in Metrology VI, pages 170–179, Singapore, 2004. World Scientific. [Google Scholar]
  • A. B. Forbes. Surface fitting taking into account uncertainty structure in coordinate data.Measurement Science and Technology, 17:553–558, 2006. [CrossRef] [Google Scholar]
  • A. B. Forbes. Uncertainty evaluation associated with fitting geometric surfaces to coordinate data. Metrologia, 43(4):S282–S290, August 2006. [CrossRef] [Google Scholar]
  • A. B. Forbes. Nonlinear least squares and Bayesian inference. In F. Pavese, M. Bär, A. B. Forbes, J.-M. Linares, C. Perruchet, and N.-F. Zhang, editors, Advanced Mathematical and Computational Tools in Metrology VIII, pages 103–111, Singapore, 2009. World Scientific. [Google Scholar]
  • A. B. Forbes. Parameter estimation based on least squares methods. In F. Pavese and A. B. Forbes, editors, Data modeling for metrology and testing in measurement science, pages 147–176, New York, 2009. Birkhäuser-Boston. [Google Scholar]
  • A. B. Forbes. Uncertainty associated with form assessment in coordinate metrology. Int. J. of Metrol. and Qual. Eng., 4:17–22, 2013. [Google Scholar]
  • A. B. Forbes and H. D. Minh. Form assessment in coordinate metrology. In E. H. Georgoulis, A. Iske, and J. Levesley, editors, Approximation Algorithms for Complex Systems, Springer Proceedings in Mathematics, Vol 3, pages 69–90, Heidelberg, 2011. Springer-Verlag. [CrossRef] [Google Scholar]
  • G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University Press, Baltimore, third edition, 1996. [Google Scholar]
  • H. Kunzmann, E. Trapet, and F. Waldele. A uniform concept for calibration, acceptance test and periodic inspection of co-ordinate measuring machines using reference objects. Annals of the CIRP, 39:561–564, 1990. [CrossRef] [Google Scholar]
  • W. Squire and G. Trapp. Using complex variables to estimate derivatives of real functions. SIAM Rev., 40:110–112, 1998. [NASA ADS] [CrossRef] [Google Scholar]
  • G. Zhang, R. Ouyang, B. Lu, R. Hocken, R. Veale, and A. Donmez. A displacement method for machine geometry calibration. Annals of the CIRP, 37:515–518, 1988. [Google Scholar]