Open Access
Issue
2013
16th International Congress of Metrology
Article Number 04010
Number of page(s) 4
Section Outils mathématiques / Mathematical tools
DOI https://doi.org/10.1051/metrology/201304010
Published online 07 October 2013
  • BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML (2008). Evaluation of measurement data – Guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology, JCGM 100:2008 [Google Scholar]
  • BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML (2008). Evaluation of measurement data – Supplement 1 to the Guide to the expression of uncertainty in measurement – Propagation of distributions using a Monte Carlo method. Joint Committee for Guides in Metrology, JCGM 101:2008 [Google Scholar]
  • BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML (2011). Evaluation of measurement data – Supplement to the Guide to the expression of uncertainty in measurement – Extension to any number of output quantities. Joint Committee for Guides in Metrology, JCGM 102:2011 [Google Scholar]
  • C. Elster, K. Klauenberg, M. Bär, A. Allard, N. Fischer, G. Kok, A. van der Veen, P. Harris, M. Cox, I. Smith, L. Wright, S. Cowen, P. Wilson, S. Ellison, Novel mathematical and statistical approaches to uncertainty evaluation in the context of regression and inverse problems, 16th International Congress of Metrology (2013) [Google Scholar]
  • R. Y. Rubinstein, D. P. Kroese, Simulation and the Monte Carlo method, Wiley (2008) [Google Scholar]
  • J. C. Helton, F. J. Davis, Reliab. Eng. Syst. Safe. 81, 23–69 (2003) [CrossRef] [Google Scholar]
  • D. Xiu, Commun. Comput. Phys. 5 (2–4), 242–272 (2009) [Google Scholar]
  • R. H. Myers, D. C. Montgomery, C. M. Anderson– Cook, Response surface methodology, Wiley, New Jersey (2009) [Google Scholar]
  • A. O’Hagan, Reliab. Eng. Syst. Safe. 91, 1290–1300 (2006) [CrossRef] [Google Scholar]
  • H. Gross, M.-A. Henn, A. Rathsfeld, M. Bär, Stochastic modelling aspects for an improved solution of the inverse problem in scatterometry, in Advanced Mathematical & Computational Tools in Metrology and Testing IX, Series on Advances in Mathematics for Applied Sciences 84, World Scientific New Jersey (2012) [Google Scholar]
  • M. –A. Henn, H. Gross, F. Scholze, M. Wurm, C. Elster, M. Bär, Opt. Express 20, 12771–12786 (2012) [CrossRef] [PubMed] [Google Scholar]
  • BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML (2012). Evaluation of measurement data – The role of measurement uncertainty in Conformity Assessment. Joint Committee for Guides in Metrology, JCGM 106:2012 [Google Scholar]
  • ISO 10576-1 (2003). Statistical methods – Guidelines for the evaluation of conformity with specified requirements. [Google Scholar]
  • AFNOR (2004). Use of uncertainty in measurement: presentation of some examples and common practices. French Standardization, FD x07-022. [Google Scholar]